Is apparent autoregulatory control of tubulin synthesis nontranscriptionally regulated?

نویسندگان

  • D W Cleveland
  • J C Havercroft
چکیده

Virtually all higher eucaryotic cells rapidly depress synthesis of new alpha- and beta-tubulin polypeptides in response to microtubule inhibitors that increase the pool of depolymerized subunits. This apparently autoregulatory control of tubulin synthesis is achieved through modulation of tubulin messenger RNA levels. In particular, in cells treated with the microtubule-depolymerizing drug colchicine, tubulin messenger RNAs are specifically and rapidly lost from the cell cytoplasm. A priori this loss may be the result of suppression of new tubulin RNA transcription, failure of newly synthesized tubulin RNAs to be properly processed or transported from the nucleus, or an increased rate of cytoplasmic tubulin RNA degradation. Although transcriptional regulation has been demonstrated for most cellular eucaryotic genes thus far investigated in detail, we found that the apparent rates of tubulin RNA transcription were essentially unchanged in isolated nuclei derived from colchicine treated or control cells. This finding argues that the principal control of tubulin gene expression in response to altered subunit pools is probably not achieved through a transcriptionally regulated mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retention of autoregulatory control of tubulin synthesis in cytoplasts: demonstration of a cytoplasmic mechanism that regulates the level of tubulin expression

Virtually all animal cells rapidly and specifically depress synthesis of new alpha- and beta-tubulin polypeptides in response to microtubule inhibitors that increase the pool of depolymerized subunits, or in response to direct elevation of the cellular tubulin subunit content through microinjection of exogenous tubulin subunits. Collectively, these previous findings have documented the presence...

متن کامل

Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover.

Cells have evolved an autoregulatory mechanism to dampen variations in the concentration of tubulin monomer that is available to polymerize into microtubules (MTs), a process that is known as tubulin autoregulation. However, thermodynamic analysis of MT polymerization predicts that the concentration of free tubulin monomer must vary if MTs are to remain stable under different mechanical loads t...

متن کامل

Global regulation of the interphase microtubule system by abundantly expressed Op18/stathmin.

Op18/stathmin (Op18), a conserved microtubule-depolymerizing and tubulin heterodimer-binding protein, is a major interphase regulator of tubulin monomer-polymer partitioning in diverse cell types in which Op18 is abundant. Here, we addressed the question of whether the microtubule regulatory function of Op18 includes regulation of tubulin heterodimer synthesis. We used two human cell model syst...

متن کامل

Autoregulated control of tubulin synthesis in animal cells.

Expression of ~and [3-tubulin, the two major components of microtubules, is regulated in animal ceils by events that operate on two levels. The first of these is the transcriptional activation of one or more members of the small multigene families of about six to seven functional genes that encode either subunit. In addition to this, the appropriate quantitative level of tubulin expression is e...

متن کامل

Mutations in the Autoregulatory Domain of β-Tubulin 4a Cause Hereditary Dystonia

Dystonia type 4 (DYT4) was first described in a large family from Heacham in Norfolk with an autosomal dominantly inherited whispering dysphonia, generalized dystonia, and a characteristic hobby horse ataxic gait. We carried out a genetic linkage analysis in the extended DYT4 family that spanned 7 generations from England and Australia, revealing a single LOD score peak of 6.33 on chromosome 19...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 97  شماره 

صفحات  -

تاریخ انتشار 1983